Bursty Feature Representation for Clustering Text Streams

نویسندگان

  • Qi He
  • Kuiyu Chang
  • Ee-Peng Lim
  • Jun Zhang
چکیده

Text representation plays a crucial role in classical text mining, where the primary focus was on static text. Nevertheless, well-studied static text representations including TFIDF are not optimized for non-stationary streams of information such as news, discussion board messages, and blogs. We therefore introduce a new temporal representation for text streams based on bursty features. Our bursty text representation differs significantly from traditional schemes in that it 1) dynamically represents documents over time, 2) amplifies a feature in proportional to its burstiness at any point in time, and 3) is topic independent. Our bursty text representation model was evaluated against a classical bagof-words text representation on the task of clustering TDT3 topical text streams. It was shown to consistently yield more cohesive clusters in terms of cluster purity and cluster/class entropies. This new temporal bursty text representation can be extended to most text mining tasks involving a temporal dimension, such as modeling of online blog pages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Parameter Free Bursty Events Detection in Text Streams

Text classification is a major data mining task. An advanced text classification technique is known as partially supervised text classification, which can build a text classifier using a small set of positive examples only. This leads to our curiosity whether it is possible to find a set of features that can be used to describe the positive examples. Therefore, users do not even need to specify...

متن کامل

خوشه‌بندی اسناد مبتنی بر آنتولوژی و رویکرد فازی

Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...

متن کامل

A Novel Burst-based Text Representation Model for Scalable Event Detection

Mining retrospective events from text streams has been an important research topic. Classic text representation model (i.e., vector space model) cannot model temporal aspects of documents. To address it, we proposed a novel burst-based text representation model, denoted as BurstVSM. BurstVSM corresponds dimensions to bursty features instead of terms, which can capture semantic and temporal info...

متن کامل

Finding Bursty Topics from Microblogs

Microblogs such as Twitter reflect the general public’s reactions to major events. Bursty topics from microblogs reveal what events have attracted the most online attention. Although bursty event detection from text streams has been studied before, previous work may not be suitable for microblogs because compared with other text streams such as news articles and scientific publications, microbl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007